
Journal of Combinatorial Theory, Series A 193 (2023) 105674
Contents lists available at ScienceDirect

Journal of Combinatorial Theory, 
Series A

www.elsevier.com/locate/jcta

On the nonexistence of semi-regular relative 

difference sets

Ka Hin Leung a,1, Bernhard Schmidt b,∗,2, Tao Zhang c,3

a Department of Mathematics, National University of Singapore, Kent Ridge, 
Singapore 119260, Republic of Singapore
b Division of Mathematical Sciences, School of Physical and Mathematical Sciences, 
Nanyang Technological University, Singapore 637371, Republic of Singapore
c Zhejiang Lab, Hangzhou 311100, China

a r t i c l e i n f o a b s t r a c t

Article history:
Received 5 August 2021
Received in revised form 6 August 
2022
Accepted 8 August 2022
Available online xxxx

Keywords:
Semi-regular relative difference set
Weil number
Group ring

In this paper, we study semi-regular relative difference sets. 
We give some nonexistence results on abelian (mn, n, mn, m)
relative difference sets. In particular, we focus on the case 
when m is prime and show that, for any fixed integer n ≥ 2, 
there are at most finitely many primes p for which an abelian 
(pn, n, pn, p) relative difference set may exist. We illustrate 
our results by investigating the existence of (mn, n, mn, m)
relative difference sets with m ∈ {2, 3, 4} in detail.
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1. Introduction

Let G be a group of order un and N be a subgroup of G of order n. A k-subset D
of G is called an (u, n, k, λ) relative difference set (RDS) in G with respect to N if the 
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expressions d1d
−1
2 with d1, d2 ∈ D, d1 �= d2, represent each element of G\N exactly λ

times and represent no element of N . If the group G is abelian, then D is called abelian 
RDS. If k = u, then D is called semi-regular RDS.

In this paper, we focus on semi-regular RDS. Semi-regular RDSs not only have their 
own interest, but also have applications in mutually unbiased bases [7]. There have been 
a number of papers devoted to the research on (pa, pb, pa, pa−b) RDSs (see [15,17] and 
the references therein). A construction of (p2t(p + 1), p + 1, p2t(p + 1), p2t) RDSs can be 
found in [3,9], where t is a positive integer and p = 2 or p is a Mersenne prime. Feng [5]
gave a construction of (p(p + 1), p, p(p + 1), p + 1) RDSs, where p is a Mersenne prime. 
Constructions of non-abelian RDSs with parameters (4q, q, 4q, 4) and (16q, q, 16q, 16) can 
be found in [6,20], where q is a sufficient large prime power with q ≡ 1 (mod 4). For 
the nonexistence results, Ma [14] showed that there does not exist abelian (pq, q, pq, p)
RDSs with p, q being two distinct odd primes such that p > q. In [10], Leung, Ma and 
Tan showed that there is no abelian (3pq, 3, 3pq, pq) RDS with p, q being two distinct 
primes larger than 3. Feng and Xiang [6] proved that if a = 1 or 2 and p is an odd prime, 
then there does not exist an abelian (2ap, p, 2ap, 2a) RDS except a = 2 and p = 3. In [8], 
Hiramine proved that if an abelian (2n, n, 2n, 2) RDS exists, then n is a power of 2 except 
for a few cases. Some nonexistence results on (mn, n, mn, m) RDS with gcd(m, n) = 1
can be found in [5,20].

The primary aim of this paper is to continue this investigation and provide new nonex-
istence results for semi-regular RDSs. Some of our results still rely on the “traditional” 
self-conjugacy approach, but the most significant parts of our paper concern cases with-
out the self-conjugacy condition. This in fact extends the pioneering work of Ma [14]
who developed powerful tools that do not require the self-conjugacy assumption. In this 
vein, we combine a new “trick” to deal with Weil numbers corresponding to characters of 
different orders with a result on unique differences modulo p to prove that, for any fixed 
integer n ≥ 2, there are at most finitely many primes p for which an abelian (pn, n, pn, p)
relative difference set may exist.

2. Preliminaries

To study a relative difference sets in a group G, it is convenient to use group ring 
notations. Let Z[G] denote the group ring of G over Z. For any A ∈ Z[G], A can be 
written as A =

∑
g∈G agg, where ag ∈ Z. We identify a subset S of G with the group 

ring element 
∑

g∈S g. Given any A =
∑

g∈G agg ∈ Z[G], we define A(t) =
∑

g∈G agg
t. 

We also define supp(A) = {g ∈ G : ag �= 0}.
It is well known that a subset D in G is an (mn, n, mn, m) RDS with forbidden group 

N if and only if

DD(−1) = mn1G + m(G−N), (1)



K.H. Leung et al. / Journal of Combinatorial Theory, Series A 193 (2023) 105674 3
where 1G is the identity of group G. Moreover, if D is an (mn, n, mn, m) RDS in G with 
forbidden group N , then D contains exactly one element of each coset of N in G.

Lemma 2.1. [16, Theorem 4.1.1] Let R be an abelian (m, n, m, m/n) RDS in G relative 
to N . Then exp(G)|m or G = Z4, n = 2.

Lemma 2.2. [4] Let R be an (m, n, k, λ) RDS in G relative to N . If U is a normal subgroup 
of G contained in N , and if ρ denotes the canonical epimorphism G → G/U , then ρ(R)
is an (m, n/u, k, λu) RDS in G/U relative to N/U .

The standard tool to investigate if possible solutions exist for (1) is to apply character 
theory. We denote the group of all characters of G by G∗. For any A =

∑
g∈G dgg and 

χ ∈ G∗, define χ(A) =
∑

g∈G dgχ(g). The following inversion formula shows that A is 
completely determined by its character value χ(A), where χ ranges over G∗.

Lemma 2.3 (Fourier inversion formula). Let G be an abelian group. If A =
∑

g∈G agg ∈
Z[G], then

ag = 1
|G|

∑
χ∈G∗

χ(A)χ(g−1),

for all g ∈ G.

For any subgroup U of G, we set

U⊥ = {χ ∈ G∗ : χ(g) = 1, ∀g ∈ U}.

Using Fourier inversion formula, it is easy to conclude the following:

Lemma 2.4. Let D be a subset of G. D is an (mn, n, mn, m) RDS with forbidden group 
N in G if and only if for any character χ ∈ G∗,

|χ(D)|2 =

⎧⎪⎨
⎪⎩

m2n2, if χ is principal;
0, if χ is nonprincipal and χ ∈ N⊥;
mn, if χ is nonprincipal and χ /∈ N⊥.

Suppose G = U × K. Then for any A =
∑

g∈G agg, we may write A =
∑

g∈K Dgg

where Dg ∈ Z[U ]. Often, we are interested in finding the value of χ(Dg) for any character 
χ ∈ G∗.

Lemma 2.5. Let G be an abelian group and let E =
∑

g∈G agg ∈ Z[G]. For every subgroup 
U of G and every χ ∈ G∗, we have
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∑
τ∈U⊥

χτ(E) = |U⊥|χ

⎛
⎝∑

g∈U

agg

⎞
⎠ .

Proof. Using the orthogonality relations, we compute
∑

τ∈U⊥

χτ(E) =
∑

τ∈U⊥

χτ(
∑
g∈G

agg)

=
∑

τ∈U⊥

∑
g∈G

agχτ(g)

=
∑
g∈G

agχ(g)
∑

τ∈U⊥

τ(g)

= |U⊥|
∑
g∈U

agχ(g)

= |U⊥|χ(
∑
g∈U

agg).

This proves the lemma. �
From now on, we assume ζm is a primitive m-th root of unity.

Corollary 2.6. Let G = U × K be an abelian group of exponent e and suppose that 
D ∈ Z[G] satisfies ψ(D) ≡ 0 ( mod B) for all ψ ∈ G∗ for some B ∈ Z[ζe] coprime to 
|K|. Write D =

∑
g∈K Dgg with Dg ∈ Z[U ]. Then χ(Dg) ≡ 0 ( mod B) for all g ∈ K

and χ ∈ G∗.

Proof. Let g ∈ K, write E = Dg−1 =
∑

h∈G ahh with ah ∈ Z, and let χ be any character 
of G. Comparing the coefficients of elements of K on both sides of Eg = D, we see that ∑

h∈U ahh = Dg. Note that |U⊥| = |K|. Hence

|K|χ(Dg) = |U⊥|χ
(∑

h∈U

ahh

)
=

∑
τ∈U⊥

χτ(E) (2)

by Lemma 2.5. Note that χτ(E) = χτ(D)χτ(g−1) ≡ 0 ( mod B) by assumption. Hence 
|K|χ(Dg) ≡ 0 ( mod B) by (2). As |K| and B are coprime, this implies χ(Dg) ≡ 0 ( mod
B). �
3. Number theoretic background

By Lemma 2.4, we are led to study the equation |X|2 = n in Z[ζu] for integers n
and u, the solution X is called a Weil number. There are basically two directions to 
prove non-existence results. One direction is to find conditions on n and u such that no 
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solution exists. If there are indeed solutions, we find all of them and try to show that 
the structure of the solutions does not meet the requirements for such difference sets.

Generally, it is quite difficult to find all the solutions for |X|2 = n in Z[ζu]. We 
say that A, B ∈ Z[ζu] are equivalent if B = ±ζiuτ(A) for some integer i and some 
τ ∈ Gal(Q(ζu)/Q). For n = 2, we have the following:

Lemma 3.1. [2, Lemma 6] Let u be a positive integer and X ∈ Z[ζu] with |X|2 = 2. Then 
X is equivalent to 1 + ζ4, 1 + ζ7 + ζ3

7 , or 1 + ζ6
15 − ζ8

15.

In [11] and [12], we obtained some interesting results when u is a prime power. We 
record some of them that we will apply in later sections.

Lemma 3.2. [11, Theorem 4.7] Let p be an odd prime and let a, w be positive integers 
with gcd(w, p) = 1. Suppose that X ∈ Z[ζpa ] satisfies |X|2 = w2. Write w = w0w1 such 
that ordp(q) ≡ 0 (mod 2) for all prime divisors q of w0 and ordp(q) ≡ 1 (mod 2) for all 
prime divisors q of w1. If w1 = 1 or w1 > 1 and gcd(ordp(q1), . . . , ordp(qk)) > 2w1 − 1, 
where q1, . . . , qk are the distinct prime divisors of w1, then X = ηw for some root of 
unity η.

The following two lemmas follow from [12, Theorems 22 and 23].

Lemma 3.3. Let p be an odd prime and n be a nonsquare integer not divisible by p. 
Let q1, . . . , qs be the distinct prime divisors of n. Write f = gcd{ordp(q1), . . . , ordp(qs)}. 
Assume that there is X ∈ Z[ζpa ] with |X|2 = n. Then f is odd and p ≤ n2 + n + 1.

Lemma 3.4. Let a be a positive integer. Let p, q be primes satisfying ordp(q) ≥ 2q. Then 
there is no solution for |X|2 = q, X ∈ Z[ζpa ].

Definition 3.5. Let p be an odd prime. We define

Θp :=
p−1∑
x=1

(
x

p

)
ζxp

where (xp ) is the Legendre symbol. For convenience, we set Θ2 = 1 + ζ4.

Note that Θp a Gauss sum. We record a known result concerning Θp.

Lemma 3.6. [12, Corollary 8] Suppose X ∈ Z[ζpa ] satisfies |X|2 = p2r+in where n ∈ N, 
r ∈ N ∪ {0} and i ∈ {0, 1}. Then X = prΘi

pA for some A ∈ Z[ζpa ] with |A|2 = n.

Next, we deal with the case where u not necessarily is a prime power. For our appli-
cation, we record a simplified version of [18, Theorem 2.2.2].
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Lemma 3.7. Let p, q be distinct primes and u = pqr where r is a positive integer. Suppose 
X ∈ Z[ζu] is a solution of XX = qa with a ≥ 1. If p � q − 1, then there is an integer j
such that

Xζju ∈ Z[ζp] or X = ζjuΘqY,

where Y ∈ Z[ζp] with |Y |2 = qa−1.

For more general situations, we need the so-called self-conjugacy assumption to de-
termine the solution of |X|2 = n.

Definition 3.8. Let u = pau′ with gcd(p, u′) = 1 where p is a prime and u′ is a positive 
integer. Then p is called self-conjugate modulo u if there exists an integer j such that 
pj ≡ −1 (mod u′). A composite integer n is called self-conjugate modulo u if every prime 
divisor of n is self-conjugate modulo u.

The self-conjugacy assumption imposes a strong necessary condition on the solution 
of equation |X|2 = n in Z[ζu].

Proposition 3.9. Suppose that A ∈ Z[ζu] satisfies |A|2 = n and let w be a divisor of n
that is self-conjugate modulo u. Write w = w2

1w2 where w2 =
∏k

i=1 pi is the square-free 
part of w and the pi’s are distinct primes (k = 0, i.e., w2 = 1 is allowed) that divides 
w2. Then

A ≡ 0
(

mod w1

k∏
i=1

Θpi

)
.

Proof. Write B = w1
∏k

i=1 Θpi
, where Θpi

Θpi
= pi. Note that |B|2 = w2

1
∏k

i=1 pi =
w. Let p be any prime ideal of Z[ζu] above w and, for X ∈ Z[ζu], let νp(X) be the 
largest nonnegative integer such that X ∈ pνp(X). Note that p is invariant under complex 
conjugation, since w is self-conjugate modulo u. Hence |A|2 = n ≡ 0 ( mod w) and 
|B|2 = w imply νp(A) ≥ νp(B). We conclude A ≡ 0 ( mod B). �
Corollary 3.10. Let p be a prime and let n, u be positive integers with gcd(u, p) = 1. 
Suppose A ∈ Z[ζu] and |A|2 = n. If pt||n and p is self-conjugate modulo u, then t is 
even.

Proof. Since p is self-conjugate modulo u, then (p) = p1 · · · ps, where the pi’s are distinct 
prime ideals of Z[ζu] above p, and pi = pi. By Proposition 3.9, the result follows. �

To end this section, we prove a technical lemma.
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Lemma 3.11. Let p be a prime and m a positive integer with p � m. Let X =
∑p−1

i=0 xiζ
i
p

and Y =
∑p−1

i=0 xi where xi ∈ Z[ζm]. Suppose p � Y , |X|2 = |Y |2 = pw and p � w. Then 
p|XȲ .

Proof. Since |Y |2 = pw and Y ∈ Z[ζm], Corollary 3.10 implies that p is not self-conjugate 
modulo m. Hence the prime ideal factorization of pZ[ζm] has the form

pZ[ζm] =
c/2∏
i=1

PiPi, (3)

where c = ϕ(m)/ordm(p) and the Pi’s are pairwise distinct prime ideals of Z[ζm]. By 
(3), the prime ideal factorization of Y has the form

Y Z[ζm] = W

c/2∏
i=1

P
αi
i Pi

βi

where W is some product of prime ideals that contain w and αi, βi, are nonnegative 
integers. Since |Y |2 = pw with p � w, we have αi + βi = 1 for all i. Hence, interchanging 
Pi with Pi if necessary, we have

Y Z[ζm] = W

c/2∏
i=1

Pi (4)

where W is an ideal in Z[ζm] relatively prime to pZ[ζm]. On the other hand,

pZ[ζpm] =

⎛
⎝c/2∏

i=1
QiQi

⎞
⎠

p−1

, (5)

where the Qi’s are pairwise distinct prime ideals of Z[ζpm], Qp−1
i = PiZ[ζpm] for all i, 

and 
∏c/2

i=1 QiQi = (1 − ζp)Z[ζpm].
By (5), the prime ideal factorization of X has the form

XZ[ζpm] = W ′
c/2∏
i=1

Q
αi
i Qi

(p−1)−αi with 0 ≤ αi ≤ (p− 1),

and W ′ is a product of prime ideals that contain w. To show p|XȲ , it suffices to show 
αi = p − 1 for all i.

Note that X − Y =
∑p−1

i=1 xi(1 − ζip). Hence, X − Y ≡ 0 mod (1 − ζp). Since 1 − ζp ∈
Q

αi
i ∩ Qi and Y ∈ Pi ⊂ Q

αi
i , it follows that X ∈ Q

αi
i . In particular, αi ≥ 1. To show 

αi = p − 1, it suffices to show that X /∈ Qi. Otherwise, it follows that Y ∈ Qi also. But 
then as Pi = Qi∩Z[ζm], we have Y ∈ Pi also. This is impossible and thus αi = p −1. �
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4. Results on the M-function

As demonstrated in [11], M-function is a useful tool to study Weil numbers. We first 
recall the definition of M-function.

Definition 4.1 (M-function). For X ∈ Z[ζu], let

M(X) = 1
ϕ(u)

∑
σ∈Gal(Q(ζu)/Q)

(XX)σ,

where ϕ denotes the Euler totient function.

Note that M(X) ≥ 1 for all nonzero X ∈ Z[ζu] by the inequality of geometric 
and arithmetic means, since 

∏
σ∈Gal(Q(ζu)/Q) (XX)σ ≥ 1. The following lemma is a 

consequence of [2, (3.4),(3.16)]. For the convenience of readers, we give a proof here.

Lemma 4.2. Let X ∈ Z[ζn], let q be a prime divisor of n, and write n = qbn′ with 
gcd(q, n′) = 1. If b = 1, then X =

∑q−1
i=0 Xiζ

i
q with Xi ∈ Z[ζn′ ] and

M(X) = 1
q − 1

∑
0≤i<j≤q−1

M(Xi −Xj). (6)

On the other hand, if b > 1, then X =
∑qb−1−1

i=0 Xiζ
i
qb with Xi ∈ Z[ζqn′ ] and

M(X) =
qb−1−1∑
i=0

M(Xi). (7)

Proof. Observe that

|X|2 =
qb−1−1∑
i=0

|Xi|2 +
qb−1−1∑
i=0

∑
0≤j �=i≤qb−1−1

XiXjζ
i−j
qb

.

Therefore,

∑
σ∈Gal(Q(ζn)/Q)

σ(|X|2) =
∑

σ∈Gal(Q(ζn)/Q)

qb−1−1∑
i=0

σ(|Xi|2) + Tr(
∑

0≤j �=i≤qb−1−1

XiXjζ
i−j
qb

)

where Tr : Q(ζn) → Q is the trace function.
For b = 1, we then have

ϕ(n)M(X) =
∑

[(q − 1)σ(
q−1∑

|Xi|2) + σ(
∑

XiXj)(−1)].

σ∈Gal(Q(ζn′ )/Q) i=0 0≤j �=i≤q−1
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Note that 
∑q−1

j=1 ζ
j
q = −1. Hence,

ϕ(n)M(X) =
∑

σ∈Gal(Q(ζn′ )/Q)

∑
0≤i<j≤q−1

σ(|Xi −Xj |2) =
∑

0≤i<j≤q−1
ϕ(n′)M(Xi −Xj).

Since ϕ(n) = (q − 1)ϕ(n′), (a) follows.
For b ≥ 2, q2|Ord(ζi−j

qb
) and thus for each summand z in XiXjζ

i−j
qb

, q2|Ord(z). There-
fore, Tr(z) = 0 and

Tr(
∑

0≤j �=i≤q−1

XiXjζ
i−j
q ) = 0.

On the other hand,

∑
σ∈Gal(Q(ζn)/Q)

qb−1−1∑
i=0

σ(|Xi|2) =
∑

σ∈Gal(Q(ζqn′ )/Q)

qb−1−1∑
i=0

qb−1σ(|Xi|2)

as each Xi ∈ Q(ζqn′). We thus get (b). �
The length of cyclotomic integers was defined in [12]. Here, we generalize the definition. 

Recall that the supp(A) denotes the support of a group ring element A, as defined in 
Section 2.

Definition 4.3. Let n, m be positive integers with gcd(m, n) = 1. Let G be a cyclic group 
of order n, and let g be a fixed generator of G. For Y =

∑n−1
i=0 aig

i ∈ Z[ζm][G], write 
Y (ζn) =

∑n−1
i=0 aiζ

i
n. We say that Y is m-minimal if

|supp(Y )| = min {| supp(Z)| : Z ∈ Z[ζm][G], Y (ζn) = Z(ζn)} .

If X ∈ Z[ζm][ζn] and Y ∈ Z[ζm][G] with Y (ζn) = X, then Y is called an m-alias of 
X. The m-length of X is |supp(Y )|, where Y is a minimal m-alias of X. We denote the 
m-length of X by �m(X).

It is straightforward to check that by using a similar argument as in the proof of [12, 
Lemma 20], with a2

i replaced by M(ai), we obtain the following:

Lemma 4.4. Let p be prime and p � m. Suppose X =
∑p−1

i=0 aiζ
i
p with all ai’s are in Z[ζm]. 

Then

M(X) ≥ 1
p− 1

(
(p− �m(X))

p−1∑
i=0

M(ai) + �m(X) max{0, �m(X) − p

2}
)
. (8)

In particular,
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M(X) ≥ max
{
p�m(X)
2(p− 1) ,

�m(X)(p− �m(X))
p− 1

}
. (9)

Note that in the argument shown in [12, Lemma 20], we need to apply Lemma 4.2 and 
use the fact that M(ai) ≥ 1 whenever ai �= 0. The following is a “field-descent” result 
based on the investigation of unique differences modulo p. In a group G, a subset A in 
G is said to have a unique difference if there exist g, h ∈ A such that gh−1 �= xy−1 for 
any x, y ∈ G with (g, h) �= (x, y). For the convenience of readers, we record the following 
result by Lev [13].

Result 4.5. Let A be a subset of a finite abelian group G and let p be the smallest prime 
divisor of |G|. If p > 2|A|−1, then A has a unique difference.

Proposition 4.6. Let u = pau′, where p is a prime, a ≥ 1 and gcd(p, u′) = 1. Let n be any 
positive integer such that p > max{4n2, 2n−1}. If X ∈ Z[ζu] is a solution of XX = n, 
then there is an integer j such that Xζjpa ∈ Z[ζu′ ].

Proof. We first deal with the case a ≥ 2. Write X =
∑s

i=1 Xiζ
ai
pa where 0 �= Xi ∈ Z[ζpu′ ]

and 0 ≤ a1 < a2 < . . . < as ≤ pa−1 − 1.
By Lemma 4.2 (7),

n = M(X) =
s∑

i=1
M(Xi).

Since M(Xi) ≥ 1 if Xi �= 0, we conclude that s ≤ n. We claim that {a1, . . . , as} does 
not have a unique difference modulo pa−1 if s ≥ 2.

Consider the equation

XX(−1) =
pa−1−1∑
r=0

∑
ai−aj≡r mod pa−1

XiXjζ
ai−aj−r
pa ζrpa = n.

Note that XiXjζ
ai−aj−r
pa ∈ Q[ζpu′ ] if ai − aj ≡ r mod pa−1. As {1, ζpa , . . . , ζp

a−1−1
pa } is 

linearly independent over Q[ζpu′ ], we see that
∑

ai−aj≡r mod pa−1

XiXjζ
ai−aj−r
pa = 0.

As all Xi’s are nonzero, the sum above either consists of no terms or at least two sum-
mands. Therefore, by viewing {a1 . . . , as} ⊂ Zpa−1 , we see that {a1 . . . , as} does not 
have unique difference. By Result 4.5, this is impossible if s ≥ 2 as p > 2n−1. Therefore, 
s = 1 and we may assume X ∈ Z[ζpu′ ].

As before, we write X =
∑s

i=1 Xiζ
ai
p where 0 �= Xi ∈ Z[ζu′ ] and 0 ≤ a1 < a2 < . . . <

as ≤ p − 1. We claim that s = �u′(X) ≤ n.
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In view of Lemma 4.4, we conclude that

2n = 2M(X) > M(X)2p− 2
p

≥ s.

Hence s ≤ 2n − 1. Observe that 2n − 1 ≤ (p − 1)/2 as p > n2 + n + 1. Thus the product 
s(p − s) is increasing when s varies from 1 to 2n − 1. However, if s ≥ n + 1, then by 
Lemma 4.4,

M(X) ≥ s(p− s)
p− 1 ≥ (n + 1)(p− (n + 1))

p− 1 ≥ n + n + p− (n + 1)2

p− 1 > n.

It follows that s ≤ n. Write

n = XX(−1) =
p−1∑
r=0

∑
ai−aj≡r mod p

XiXjζ
r
p .

Since p > n2 + n + 1 > s2, there exists 0 < t ≤ p − 1 such that t �= ai − aj for any 
1 ≤ i, j ≤ s. In particular,

∑
ai−aj≡t mod p

XiXjζ
t
p = 0.

As {1, ζp, . . . , ζp−1
p }\{ζtp} is linearly independent over Q[ζu′ ], it then follows for 1 ≤ r ≤

p − 1,
∑

ai−aj≡r mod p

XiXjζ
r
p = 0.

Using a similar argument as before, we see that {a1, . . . , as} ⊂ Zp does not have a 
unique difference if s > 1, which again is impossible. Hence s = 1 and X = ζpX

′ for 
some X ′ ∈ Z[ζu′ ]. �
Lemma 4.7. Let u be a positive integer and X, Y ∈ Z[ζu].

(a) We have

M(X + Y )1/2 ≤ M(X)1/2 + M(Y )1/2. (10)

Moreover, equality holds in (10) if and only if Y = αX for some α ∈ Q.

(b) If X �= 0 and X ≡ 0 ( mod m) for some integer m, then

M(X) ≥ m2. (11)
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Proof. For a proof of (10), please see [19, p. 70]. Suppose that X ≡ 0 ( mod m). Then 
X = mY for some Y ∈ Z[ζn], and M(X) = m2M(Y ) ≥ m2, since M(Y ) ≥ 1. �
Lemma 4.8. Suppose that X, Y ∈ Z[ζu] satisfy |X|2 = |Y |2 = n and X ≡ Y ( mod a)
where a, n, v are positive integers. If X �= Y , then a ≤ 2

√
n.

Proof. Suppose that X �= Y . Note that M(X) = M(Y ) = n. As X ≡ Y ( mod a) by 
assumption, we have M(X − Y ) ≥ a2 by (11). On the other hand,

M(X − Y ) ≤ M(X) + M(Y ) + 2M(X)1/2M(Y )1/2 = 4n

by (10). We conclude a2 ≤ 4n and thus a ≤ 2
√
n. �

Lemma 4.9. Let u, n ≥ 2 be integers and suppose that X, Y ∈ Z[ζu] satisfy |X|2 = |Y |2 =
n. If X ≡ Y ( mod n), then X = Y , except for the following cases.
(i) n = 2, X is equivalent to 1 + ζ4, and Y = X̄;
(ii) n = 2, X is equivalent to 1 + ζ4, 1 + ζ7 + ζ3

7 , or 1 + ζ6
15 − ζ8

15, and Y = −X;
(iii) n = 3, Y ∈ {η(−1 + ζ3), η(−1 + ζ2

3 )} for some root of unity η, and X = Y + 3η;
(iv) n = 4, X = ±2η for some root of unity η, and Y = −X.

Proof. Suppose that X ≡ Y ( mod n) and X �= Y . By Lemma 4.8, we have n ≤ 2
√
n

and thus n ≤ 4.
Suppose that n = 4. By (10),

M(X − Y ) ≤ M(X) + M(Y ) + 2M(X)1/2M(Y )1/2 = 16.

Since X ≡ Y ( mod 4), then M(X − Y ) ≥ 16. Hence we have equality in (10) and thus 
Y = αX for some α ∈ Q. Since |X| = |Y |, we conclude X = ±Y . As X �= Y , this implies 
X = −Y . Hence 2X ≡ X − Y ≡ 0 ( mod 4) and thus X ≡ 0 ( mod 2). This implies 
X = 2η for some root of unity η.

Suppose that n = 3. As X ≡ Y ( mod 3), we have X − Y = 3Z for some Z ∈ Z[ζu]. 
Suppose that Z is not a root of unity. Then M(Z) ≥ 3/2 by [2, Lemma 2]. Thus 
M(X − Y ) = 9M(Z) ≥ 27/2, contradicting (10). Hence Z is a root of unity, i.e., 
X − Y = 3η for some root of unity η. We conclude

3 = |X|2 = |Y + 3η|2 = |Y |2 + 9 + 3(Y η̄ + Ȳ η) = 12 + 3(Y η̄ + Ȳ η)

and hence T + T̄ = −3 where T = Y η̄. This implies 
(T ) = −3/2, where 
(T ) denotes 
the real part of T . Thus T = −3/2 +ai with a ∈ Q. Note that 3 = |Y |2 = |T |2 = 9/4 +a2. 
Hence a = ±

√
3/2 and T = −3/2 ± (

√
3/2)i = −1 + ζ3 or T = −1 + ζ2

3 . We conclude 
Y = ηT ∈ {η(−1 + ζ3), η(−1 + ζ2

3 )}.
Finally, for n = 2, we check that either (i) or (ii) holds by applying Lemma 3.1. �
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Lemma 4.10. Suppose X =
∑p−1

i=0 xiζ
i
p and xi ∈ Z[ζm] for all i. If p � m, |X|2 = p and 

| 
∑p−1

i=0 xi|2 = p, then there exists j such that |xj |2 = p and xi = 0 if i �= j.

Proof. Let Y =
∑p−1

i=0 xi. We first deal with the case p = 2. In this case X = x0 − x1
and Y = x0 + x1. But by Lemma 4.9, we see that X = ±Y . That means either x0 = 0
or x1 = 0.

We may now assume p ≥ 3. By Lemma 3.11, we see that p|XȲ . Therefore,

XȲ =
p−1∑
i=0

xiȲ ζip = pZ

for some Z ∈ Z[ζpm]. Since |X|2 = |Y |2 = p, it follows that |XȲ | = p. Hence |Z| = 1. 
Therefore, Z = ζζtp for some integer t and a root of unity ζ ∈ Z[ζm]. We may assume 
t = 0. Then

p−2∑
i=0

(xi − xp−1)Ȳ ζip = pζ.

Multiplying both sides by Y , we obtain 
∑p−2

i=0 (xi−xp−1)ζip = Y ζ as Y Ȳ = p. Therefore, 
(x0 − xp−1) = Y ζ and xi − xp−1 = 0 whenever 0 < i ≤ p − 2. Thus, Y =

∑p−1
i=0 xi =

Y ζ + pxp−1. By Lemma 4.9, xp−1 = 0 and ζ = 1 if p > 3. It then follows xi = 0 for 
i �= 0. Our conclusion then follows.

Finally, we assume p = 3. By Lemma 4.9, if xp−1 �= 0, we may then assume X or Y
is in Z[ζ3] and X = Y + 3 after multiplying X and Y by η−1. Thus, we may assume 
both X, Y ∈ Z[ζ3]. This is impossible as Y ∈ Z[ζm] with 3 � m. Therefore, xp−1 = 0 and 
hence xi = 0 if i �= 0. �
5. General nonexistence results

In this section, we assume D is an (mn, n, mn, m) RDS in an abelian group G. We 
will derive some necessary conditions on m, n.

Theorem 5.1. Let D be an (mn, n, mn, m) RDS in group G relative to a subgroup N . 
Suppose q is a prime divisor of n and qt‖mn.

(a) For any prime p �= q that divides mn and self-conjugate modulo q if q is odd or qt if 
q = 2, then pb‖mn implies b is even.

(b) Let q1, q2, . . . , qs be all the distinct prime divisors of mn which are self-conjugate 
modulo q if q is odd and qt if q = 2. Suppose q �= qi for all i and qbii ‖mn for i =
1, . . . , s. Denote A := mn/(qtqb11 . . . qbss ). Then either A is a square or q ≤ A2+A +1.

Proof. There exists χ /∈ N⊥ such that ord(χ) = qr. By Lemma 2.4, |χ(D)|2 = mn. Since 
pb‖mn and χ(D) ∈ Z[ζqr ], it follows from Corollary 3.10 that b is even.
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For (b), it follows from Proposition 3.9 that there exists B ∈ Z[ζqr ] such that B|χ(D)
and |B|2 = qaqb11 . . . qbss . Therefore, there exists X ∈ Z[ζqr ] such that |X|2 = A. It follows 
from Lemma 3.3 that q ≤ A2 + A + 1. �

To deal with the case when A is a square, we need a different approach.

Lemma 5.2. Let D be an (mn, n, mn, m) RDS in group G relative to a subgroup N . 
Suppose q2c‖mn and there exists a subgroup G′ such that G = G′ × G1 and q � |G′|. If 
qc|χ(D) for all χ ∈ G⊥

1 , then

qcn ≤ n + |G1| − |G1 ∩N |.

Proof. Let η : G → G′ be the natural projection. Write D =
∑

h∈G′ Xhh where Xh ∈
Z[G1]. Note that η(D) =

∑
h∈G′ |Xh|h and

η(DD(−1)) = mn + m|G1| ·G′ −m · η(N). (12)

By Corollary 2.6, |Xh| ≡ 0 (mod qc) for all h. By comparing the coefficients of identity 
in both sides of the Equation (12), we get

∑
h∈G′

|Xh|2 ≤ mn + m|G1| −m|G1 ∩N |.

Since 
∑

h∈G′ |Xh| = mn and qc divides |Xh|, it follows that

∑
h∈G′

|Xh|2 ≥ q2c
∑

h∈G′ |Xh|
qc

.

(Here we use the inequality that if all ai’s are nonzero integers, 
∑r

i=1 |ai|2 ≥ |a|2r where 
a = min{ai : i = 1, . . . , r}.) Therefore, q2c(mn

qc ) ≤ mn + m|G1| − m|G1 ∩ N | and our 
lemma follows. �
Theorem 5.3. Let D be an (mn, n, mn, m) RDS in group G relative to a subgroup N . 
Suppose q is a prime; qc‖mn and n is not a power of q. If there exist m′|m, n′|n such 
that the following conditions hold:

(i) gcd( mn2

m′n′ 2 , m′n′ 2) = 1;
(ii) q � m′n′ and n′ �= 1;
(iii) q is self-conjugate modulo m′n′ 2;

then c is even and q
c
2n′ ≤ n′ + mn

m′n′ − 1.

Proof. By (i), there exist subgroups G′ of order m′n′ 2 and subgroup G1 of order mn2

m′n′ 2

such that G = G′×G1. For any nonprincipal χ ∈ G⊥
1 , χ(D) ∈ Z[ζm′n′ ] and |χ(D)|2 = mn
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or 0. As q � n′ and n′ > 1, it follows from Theorem 5.1 that c is even. By Proposition 3.9, 
we deduce that qc/2|χ(D). Our Theorem now follows from Lemma 5.2. �

For the purpose of our applications, it is sufficient to consider the case m′, n′ in 
Theorem 5.3 are p-powers.

Theorem 5.4. Let D be an (mn, n, mn, m) RDS in group G relative to a subgroup N . 
Suppose m = par, n = pbs where p is an odd prime, a, b are integers with b ≥ 1; and 
gcd(p, r) = gcd(p, s) = 1. Suppose rs is a square, write rs = (v0v1)2, where ordp(q) ≡ 0
(mod 2) if q|v0; and ordp(q) ≡ 1 (mod 2) if q|v1. If one of the following conditions

(i) v1 = 1;
(ii) v1 > 1 and gcd(ordp(q1), . . . , ordp(qk)) > 2v1 − 1, where q1, . . . , qk are the distinct 

prime divisors of v1;

holds, then pb ≤ √
rs + 1.

Proof. We will follow the notation used in Theorem 5.3. In this case, |G′| = pa+b and 
|G1| = rs. It follows from Lemma 3.2 that (v0v1) | χ(D). Since gcd(v0v1, p) = 1, we may 
argue by a similar argument as in Theorem 5.3 and obtain

(v0v1)2
pa+brs

v0v1
≤ mn + m(rs2) − pars = pa+brs + par2s2 − pars.

Recall that rs = (v0v1)2. After simplification, we obtain pb ≤ √
rs + 1. �

The following results were implicitly contained in [1] and recorded in [8]. The first one 
deal with the exponent of the group.

Lemma 5.5. Let D be an abelian (mn, n, mn, m) RDS in G relative to N . For any prime 
p that divides n, we let Sp be the p-Sylow subgroup of N . Then either p < m + 1 or 
|Sp| >

√
n.

Lemma 5.6. Let R be an abelian (mn, n, mn, m) RDS in G relative to N . Suppose p ≥ 3
is a prime dividing n and rp(G) denote the p-rank of G, i.e. the minimum number of 
generators of the Sylow p-subgroup of G. Then

(p−m− 1)n ≤ prp(G) − prp(N) − prp(G/N).

It is easy to deduce the following from Lemma 5.6.

Corollary 5.7. Let D be an abelian (mn, n, mn, m) RDS in G relative to N . There exists 
at most one prime p that divides n with p > m + 1.
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Corollary 5.7 is crucial in the proof [8, Theorem 61.] as it reduces to the case when 
n has at most one prime factor larger than 3. To end this section, we record a technical 
result.

Lemma 5.8. Suppose D is an (mn, n, mn, m) RDS in G relative to N and gcd(m, n) = 1. 
Write G = G′ ×H where G′ is a subgroup of order m and H a subgroup of order n2. If 
D =

∑
g∈G′ Dgg, then DgDh �= H for some g �= h in G′.

Proof. Suppose DgDh = H for all g �= h in G′. Then DgD
(−1)
h = H for all g �= h in G′. 

Set Wg = supp(DgD
(−1)
g ) for any g ∈ G′. Suppose ab−1 = cd−1 for some elements a, b ∈

supp(Dg) and c, d ∈ supp(Dh). As ad = bc and DgDh = H, we have a = b and c = d. 
Therefore, ab−1 = e. This shows Wg ∩Wh = {e}. In particular, 

⋃
g �=e supp(DgD

(−1)
g ) ∩

supp(DeD
(−1)
e ) = {e}. Write

∑
g∈G′\{e}

DgD
(−1)
g = (m− 1)n + T1 and DeD

(−1)
e = n + T2

where T1, T2 ∈ Z[H]. Note that supp(T1) ∩ supp(T2) ⊂ {e}. On the other hand, as 
DD(−1) = mn + m(G −N), it follows that

∑
g∈G′

DgD
(−1)
g = mn + m(H −N) = mn + T1 + T2.

Hence, T1 + T2 = m(H −N). As supp(T1) ∩ supp(T2) ⊂ {e}, it follows that T1 = mT ′
1

and T2 = mT ′
2 where T ′

1, T
′
2 ∈ Z[H].

Let χ be a nontrivial character on H. Then χ(De) = 0 implies n +mχ(T ′
2) = 0. Hence, 

m|n. This is impossible. On the other hand, if χ(De) �= 0, then χ(Dg) = 0 for all g �= e. 
Therefore, (m − 1)n + mχ(T ′

1) = 0. Again, m|n, which is impossible. �
6. Abelian (pn, n, pn, p) RDSs

In this section, we are only concerned with (pn, n, pn, p) RDSs for prime p.

Theorem 6.1. Let p, q be distinct primes. Then there does not exist an abelian (pqr, qr,
pqr, p) RDS if either one of the following holds:

(a) ordq(p) ≥ 2p.
(b) p2 + p + 1 < q.
(c) q is self-conjugate modulo p.

Proof. Let G = 〈g〉 × H be an abelian group, where gp = 1 and |H| = q2r. Write 
D =

∑p−1
i=0 Dig

i, where Di ⊆ H.
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Recall that D contains exactly one element of each coset of N . Since g /∈ N and 
N ⊂ H, this implies that each Di contains exactly one element of each coset of N in H. 
Suppose ψ is a nontrival character of H that is trivial on N . Let τ be the character of 
H/N that is induced by ψ, that is, τ(Ng) = ψ(g) for all g ∈ H. Note that τ is nontrivial 
since ψ is nontrivial. Hence

χ(Di) =
∑
g∈Di

ψ(g) =
∑
g∈Di

τ(Ng) = τ(H/N) = 0 for all i. (13)

To prove part (a), we let χ /∈ N⊥ with ord(χ) = qa for some integer a. Then |χ(D)|2 =
pqr. By Lemma 3.6, there exists X ∈ Z[ζqa ] such that |X|2 = p. By Lemma 3.4, we get 
a contradiction.

(b) follows from Lemma 3.3.
Finally, we assume q is self-conjugate modulo p. Let χ /∈ N⊥ be any nontrivial char-

acter of group G with ord(χ) = qa for some integer a and σ be a character of order p. 
Clearly,

|
p−1∑
i=0

χ(Di)ζijp |2 = pqr

for j = 0, . . . , p − 1. Since q is self-conjugate modulo p, we deduce from Corollary 2.6
that Θr|χ(Di) for i = 0, . . . , p − 1. Let χ(Di) = Θrxi. Then we have

|
p−1∑
j=0

xjζ
j
p|2 = p and |

p−1∑
j=0

xj |2 = p.

By Lemma 4.10, we see that there exists i(χ) such that |xi(χ)|2 = p for some i(χ) and 
xj = 0 if j �= i(χ). Therefore, |χ(Di(χ))|2 = pqr and χ(Dj) = 0 if j �= i(χ). Hence for any 
χ /∈ N⊥, we have χ(DiDj) = 0 whenever i �= j. Combining this with (13), we conclude 
that, for every nontrivial character χ of H, we have χ(DiDj) = 0 for i �= j. Note that 
as |Di||Dj | = |H|, DiDj = H. This contradicts Lemma 5.8. �

We remark that Theorem 6.1 can be generalized by using a similar argument, but 
omit the tedious details.

Theorem 6.2. Let p a prime, let n > 1 be an integer coprime to p, and let u be a 
divisor of n such that gcd(u, n/u) = 1 and n/u is self-conjugate modulo pn. If an abelian 
(pn, n, pn, p) RDS exists, then p ≤ max{4u4, 2u2−1}.

Proof. Suppose such RDS exists and assume that p > max{4u4, 2u2−1}. Let G = 〈g〉 ×H

be an abelian group, where g is an element of order p and |H| = n2. By Lemma 2.1, 
we have exp(G)|np (the case G = Z4 cannot occur, since gcd(p, n) = 1). As n/u is 
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self-conjugate modulo pn by assumption, we conclude that n/u is self-conjugate modulo 
exp(G).

Let q, q′ be primes that divide n/u. Suppose qt||(n/u). Then by Theorem 5.1 (a), t is 
even if q �= q′. As q �= p and gcd(n/u, u) = 1. It follows that either n/u is a square or 
n/u = qr for some odd integer r.

For any nonprincipal character χ, |χ(D)|2 = pn or 0. As the order of χ divides exp(G)
and n/u is self conjugate modulo exp(G), we then conclude from Proposition 3.9 that 
there exist integer x and a prime q|n such that |xΘi

q|2 = n/u; and

χ(D) ≡ 0 (mod xΘi
q).

Here i = 0 or 1 and i = 0 if n/u is a square. For convenience, we write y = xΘi
q.

Write D =
∑p−1

i=0 Dig
i as in Theorem 6.1. In view of Corollary 2.6, we conclude that if 

χ is nonprincipal, then y|χ(Di). Thus, we may set xi = χ(Di)/y for all i and xi ∈ Z[ζn]
as χ(Di) ∈ Z[ζn].

If χ /∈ N⊥, then |χ(D)|2 = pn and thus

|
p−1∑
i=0

xiζ
i
p|2 = |

p−1∑
i=0

xi|2 = pu.

By Lemma 3.11,

(
p−1∑
i=0

xiζ
i
p)(

p−1∑
i=0

xi) = pY

where Y ∈ Z[ζpn] and |Y |2 = u2. Write Y =
∑p−1

i=0 yiζ
i
p where yi ∈ Z[ζn]. By Proposi-

tion 4.6 and our assumption that p > max{4u4, 2u2−1}, we see that there exists t such 
that Y = ytζ

t
p and yj = 0 if j �= t. Hence,

p−1∑
j=0

xjζ
j
p = (

p−1∑
j=0

xj)−1pytζ
t
p ∈ Q[ζn]ζtp.

Since 
∑p−1

j=0 xjζ
j
p is an algebraic integer in Z[ζpn],

xt +
∑
j �=t

xjζ
j−t
p = (

p−1∑
j=0

xjζ
j
p)ζ−t

p = (
p−1∑
j=0

xj)−1pyt ∈ Z[ζn].

It follows that xj = xi whenever j �= t, i �= t. Now set s �= t and observe that

xt − xs =
p−1∑

xjζ
j−t
p .
j=0
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Hence, |xt − xs|2 = pu. Moreover,

p−1∑
i=0

xi = (xt − xs) + pxs.

If xs �= 0, then by Lemma 4.8, we obtain p < 2
√

pu2. This is impossible. Hence, xs = 0
and xj = 0 if j �= t. Therefore, χ(Dt) �= 0 and χ(Dj) = 0 if j �= t. That means 
χ(DiDj) = 0. Since this is true for all nonprincipal χ ∈ 〈g〉⊥, DiDj = aH for an 
integer a. Now |Di| = |Dj | = n and |H| = n2, so a = 1. By Lemma 5.8, we get a 
contradiction. �
Corollary 6.3. For any fixed integer n ≥ 2, an abelian (pn, n, pn, p) RDS exists for at 
most finitely many primes p.

Proof. Assume that an abelian (pn, n, pn, p) RDS exists. We set u = n in Theorem 6.2. 
Then n/u = 1. We may then say n/u is self conjugate modulo pn and by Theorem 6.2, 
we get the desired conclusion. On the other hand, one may set y = 1 in the proof of 
Theorem 6.2, and then apply the argument to conclude p ≤ max{4n4, 2n2−1}. �
Corollary 6.4. Let p > 3 be a prime and let n be a positive integer such that n is self-
conjugate modulo pn. Then no abelian (pn, n, pn, p) RDS exists.

Proof. Assume that an abelian (pn, n, pn, p) RDS exists. Setting u = 1 in Theorem 6.2, 
we conclude p ≤ max(4, 20) = 4. �

Note that Corollary 6.4 generalizes Theorem 6.1 (c) if p > 3. Next, we consider cases 
without the self-conjugacy condition. It has been shown in [14] that (pq, q, pq, p) RDS 
does not exist if p > q.

Theorem 6.5. Let p and q be two distinct odd primes such that gcd(p, q − 1) = 1. 
Then there does not exist an abelian (pq, q, pq, p) RDS. In particular, there is no abelian 
(pq, q, pq, p) RDS if p > q.

Proof. Let G = 〈g〉 × H be an abelian group, where ord(g) = p and |H| = q2. Write 
D =

∑p−1
i=0 Dig

i, where Di ⊆ H. Note that by Lemma 2.1, exp(G) = pq. Let χ ∈ G∗\N⊥

be a character of order q and τ be a character of order p. Note that χ(D) = xΘq where 
x ∈ Z[ζq] with |x|2 = p.

By Lemma 3.11, we see that x|τχ(D) and therefore, τχ(D) = xY with Y ∈ Z[ζpq]. 
As |Y |2 = q, it follows from Lemma 3.7 that either Y = Θqζ or Y ∈ Z[ζp]ζ where ζ is a 
root of unity. Note that as x ∈ Z[ζq] and x|τχ(D), x|χ(Di −Dj) for any i, j.

We first consider the case Y ∈ Z[ζp]ζjq for some j. We may assume Y = (
∑p−1

i=1 aiζ
i
p)ζjq

where ai’s are integers. As x|χ(Di −D0), χ(Di −D0) = xaiζ
j
q . Note that ord(χ) = q as 
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exp(G)|pq. H = (Ker(χ) ∩H) ×Q where Q is a subgroup of order q. Let η : G → H be 
the natural projection. We may consider χ a character of Q and |χ(η(Di−D0))|2 = pa2

i . 
Thus,

η((Di −D0)(Di −D0)(−1)) = pa2
i + αQ. (14)

But by applying the principal character on the above equation, we conclude that pa2
i +

αq = 0. Note that α �= 0 if ai �= 0. Therefore, q|ai. But then we have q|Y , which is 
impossible as |Y |2 = q. Hence Y = Θqζ where ζ is a root of unity.

We may assume Y = Θqζζ
j
p where ζ is a root of unity in Z[ζq]. Pick t �= j, then ∑

χ(Di − Dt)ζip = xZ. It is then clear that χ(Di − Dt) = 0 and χ(Dj − Dt) = xΘqζ. 
But then

xΘq =
p−1∑
i=0

χ(Di) =
∑

χ(Di −Dt) + pχ(Dt) = xΘqζ + pχ(Dt).

If ζ �= 1, then p divides |1 − ζ|. This is impossible as ζ = ±ζiq. Thus χ(Dt) = 0; 
χ(Dj) = χ(D) and χ(Di) = 0 if i �= j.

It follows that χ(DiDj) = 0 for all nonprincipal χ ∈ 〈g〉⊥. Note that χ(Di) = 0 if 
χ ∈ N⊥ by the same argument as for (13). Therefore DiDj = aH for an integer a. As 
|Di| ·|Dj | = n2 = |H|, we see that a = 1 and DiDj = H. This contradicts Lemma 5.8. �
7. m = 2, 3 or 4

In this section, we focus cases on m ≤ 4. We will now illustrate how our previous results 
be applied in these situations. First, (2n, n, 2n, 2)-RDSs have been studied extensively 
in [8]. One of main results is the following:

Result 7.1. [8, Theorem 6.10] If an abelian (2n, n, 2n, 2) RDS exists, then n is a power 
of 2 except in the following cases.

(a) n = 2a3b, a, b ≥ 1.
(b) n = 2a3bpc, pc > 2a3b > 1 for a prime p > 3.

Here, we illustrate how we derive the above result from ours. By Theorem 6.1, we see 
that (2qr, qr, 2qr, 2) RDS does not exist if q is a prime larger than 3. It then follows from 
Corollary 6.4 that 2|n and there is at most one prime p ≥ 5 that divides n.

Unfortunately, Corollary 6.4 cannot be applied to exclude cases not yet excluded from 
Result 7.1. However, we may apply Theorem 5.4 to study (q2cpa+b, qαpb, q2cpa+b, q2c−αpa)
RDS.
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Lemma 7.2. Suppose p, q are distinct primes and p is odd. Let a, b, c, α be positive inte-
gers and D be (q2cpa+b, qαpb, q2cpa+b, q2c−αpa) RDS. If q is self-conjugate modulo p or 
ordp(q) > qc − 1, then pb ≤ qc + 1.

Theorem 7.3. Suppose an abelian (2n, n, 2n, 2) RDS exists and p is an odd prime.

(a) If n = 2pb, then p = 7 and b is even.
(b) If n = 4pb, then pb ∈ {7r, 23r, 31r, 73s : r ≥ 2 is even, s ≥ 1}.
(c) If n = 8pb, then pb = 3 or 7r with r ≥ 2.

Proof. If 2 is self-conjugate modulo p or ordp(q) ≥ 3, then by Lemma 7.2, p ≤ 3 and 
b = 1. But as 3 is self-conjugate modulo 4, it follows from Theorem 6.1 that b is even if 
n = 2 · 3b.

If 2 is not self-conjugate modulo p and ordp(2) > 2v1−1 = 3, then again by Lemma 7.2, 
we get pb ≤ 3. This is impossible. Thus, ordp(2) ≤ 3. Consequently, p = 3, 5 or 7. As we 
assume 2 is not self-conjugate modulo p, p = 7. Again, as 7 is conjugate modulo 4 from 
Theorem 6.1 that b is even.

For (b), by Theorem 5.1 (b), there exists B ∈ Z[ζpb ] such that |B|2 = 8. As shown in 
[12, Corollary 33], p = 3, 5, 7, 23, 31, 73. Since 2 is self-conjugate modulo 3 and 5, then 
p cannot be 3 or 5. Note that 7, 23 and 31 are self-conjugate modulo 8, it follows from 
Theorem 6.1 that b is even if n = 4 · 7b, n = 4 · 23b or n = 4 · 31b.

The proof of (c) is similar as (a). If 2 is self-conjugate modulo p, then pb ≤ 22 +1 ≤ 5. 
Thus, pb = 3 or 5. By Lemma 5.5, pb cannot be 5.

If 2 is not self-conjugate modulo p and ordp(2) > 2v1 − 1 = 7, then pb ≤ 5. This is 
impossible. Thus, ordp(2) ≤ 7. Consequently, p = 3, 5, 7, 31 or 127. As we assume 2 is 
not self-conjugate modulo p, p = 7, 31 or 127. For any χ /∈ N⊥ with order pa for some 
a ≥ 1, we have |χ(D)| = 16pb. Then χ(D) = Θb

pY , where Y ∈ Z[ζpa ]. Hence |Y |2 = 16. 
By using a similar argument as in [12, Corollary 33], we see that either 4|Y or p = 7. If 
�= 7, we get a contradiction by Lemma 5.5. (Note that using the notation in Lemma 5.5, 
q2c = 16, n = 4pb, |G1| = 16 and |G′| = p2b.) �

For m = 3, we obtain a result analogous to Result 7.1 as follows:

Theorem 7.4. Suppose an abelian (3n, n, 3n, 3) RDS exists. Then one of the following 
conditions is satisfied:

(a) n = pr with p = 3 or 13.
(b) n = 2a3b, a, b ≥ 1.
(c) n = 2a3bpc, pc > 2a3b > 1 for a prime p > 3.
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Table 1
Nonexistence of abelian (2n, n, 2n, 2) RDS for 2 ≤ n ≤ 100 and n �= 2a.

n nonexistence n nonexistence n nonexistence
3 [8], Theorem 6.1 5 [8], Theorem 6.1 6 Theorem 5.1
7 [8], Theorem 6.1 9 [8], Theorem 6.1 10 Theorem 7.3
11 [8], Theorem 6.1 12 Theorem 5.1 13 [8], Theorem 6.1
14 Theorem 5.1 15 Theorem 5.1 17 [8], Theorem 6.1
18 Theorem 7.3 19 [8], Theorem 6.1 20 Theorem 5.1
21 Theorem 5.1 22 Theorem 5.1 23 [8], Theorem 6.1
24 ? 25 [8], Theorem 6.1 26 Theorem 7.3
27 [8], Theorem 6.1 28 Theorem 5.1 29 [8], Theorem 6.1
30 Theorem 5.1 31 [8], Theorem 6.1 33 Theorem 5.1
34 Theorem 7.3 35 Theorem 5.1 36 Theorem 5.1
37 [8], Theorem 6.1 38 Theorem 5.1 39 Theorem 5.1
40 [8, Theorem 3.11] 41 [8], Theorem 6.1 42 Theorem 5.1
43 [8], Theorem 6.1 44 Theorem 5.1 45 Theorem 5.1
46 Theorem 5.1 47 [8], Theorem 6.1 48 Theorem 5.1
49 [8], Theorem 6.1 50 Theorem 7.3 51 Theorem 5.1
52 Theorem 5.1 53 [8], Theorem 6.1 54 Theorem 5.1
55 Theorem 5.1 56 [8, Theorem 3.11] 57 Theorem 5.1
58 Theorem 7.3 59 [8], Theorem 6.1 60 Theorem 5.1
61 [8], Theorem 6.1 62 Theorem 5.1 63 Theorem 5.1
65 Theorem 5.1 66 Theorem 5.1 67 [8], Theorem 6.1
68 Theorem 5.1 69 Theorem 5.1 70 Theorem 5.1
71 [8], Theorem 6.1 72 Theorem 5.3 73 [8], Theorem 6.1
74 Theorem 7.3 75 Theorem 5.1 76 Theorem 5.1
77 Theorem 5.1 78 Theorem 5.1 79 [8], Theorem 6.1
80 Theorem 5.1 81 [8], Theorem 6.1 82 Theorem 7.3
83 [8], Theorem 6.1 84 Theorem 5.1 85 Theorem 5.1
86 Theorem 5.1 87 Theorem 5.1 88 Theorem 7.2
89 [8], Theorem 6.1 90 Theorem 5.1 91 Theorem 5.1
92 Theorem 7.3 93 Theorem 5.1 94 Theorem 5.1
95 Theorem 5.1 96 ? 97 [8], Theorem 6.1
98 ? 99 Theorem 5.1 100 Theorem 5.1

Proof. By Theorem 6.1, we see that p ≤ 13. On the other hand, 3 is not self-conjugate 
modulo p and p is not self-conjugate modulo 3, therefore, p = 2 or 13. By Corollary 6.4, 
there is at most one prime factor of n larger than 3. Thus (b) or (c) holds. �

Again, by applying Lemma 7.2, we obtain the following in case n = 3pr.

Theorem 7.5. Let p > 3 be a prime. If an abelian (9pr, 3pr, 9pr, 3) RDS exists, then 
p = 11 or 13.

Proof. Suppose ordp(3) > 5 or p is self-conjugate modulo 3. Then by Lemma 7.2, pr ≤
3 + 1 = 4. This is impossible as p ≥ 5. Therefore, ordp(3) ≤ 5 and p is not self-conjugate 
modulo 3. Thus, p = 11 and 13. �

For m = 4, using a similar argument as Theorem 7.3, we deduce the following:

Theorem 7.6. Let p be a prime and r be a positive integer, then there does not exist an 
abelian (4pr, pr, 4pr, 4) RDS except p = 2, 7 and p = 3, r = 1.
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Table 2
Nonexistence of abelian (3n, n, 3n, 3) RDS for 2 ≤ n ≤ 100 and n �= 3a.

n nonexistence n nonexistence n nonexistence
2 Theorem 7.4 4 Theorem 7.4 5 Theorem 7.4
6 Theorem 5.1 7 Theorem 7.4 8 Theorem 7.4
10 Theorem 5.1 11 Theorem 7.4 12 ?
13 ? 14 Theorem 5.1 15 Theorem 5.1
16 Theorem 7.4 17 Theorem 7.4 18 Theorem 5.1
19 Theorem 7.4 20 Theorem 5.1 21 Theorem 5.3
22 Theorem 5.1 23 Theorem 7.4 24 Theorem 5.1
25 Theorem 7.4 26 Theorem 5.1 28 Theorem 5.1
29 Theorem 7.4 30 Theorem 5.1 31 Theorem 7.4
32 Theorem 7.4 33 Theorem 5.1 34 Theorem 5.1
35 Theorem 5.1 36 Theorem 5.1 37 Theorem 7.4
38 Theorem 5.1 39 ? 40 Theorem 5.1
41 Theorem 7.4 42 Theorem 5.1 43 Theorem 7.4
44 Theorem 5.1 45 Theorem 5.1 46 Theorem 5.1
47 Theorem 7.4 48 ? 49 Theorem 7.4
50 Theorem 5.1 51 Theorem 5.1 52 Theorem 5.1
53 Theorem 7.4 54 Theorem 5.1 55 Theorem 5.1
56 Theorem 5.1 57 Theorem 7.5 58 Theorem 5.1
59 Theorem 7.4 60 Theorem 5.1 61 Theorem 7.4
62 Theorem 5.1 63 Theorem 5.1 64 Theorem 7.4
65 Theorem 5.1 66 Theorem 5.1 67 Theorem 7.4
68 Theorem 5.1 69 Theorem 7.4 70 Theorem 5.1
71 Theorem 7.4 72 Theorem 5.1 73 Theorem 7.4
74 Theorem 5.1 75 Theorem 5.3 76 Theorem 5.1
77 Theorem 5.1 78 Theorem 5.1 79 Theorem 7.4
80 Theorem 5.1 82 Theorem 5.1 83 Theorem 7.4
84 Theorem 5.1 85 Theorem 5.1 86 Theorem 5.1
87 Theorem 5.1 88 Theorem 5.1 89 Theorem 7.4
90 Theorem 5.1 91 Theorem 5.1 92 Theorem 5.1
93 Theorem 7.5 94 Theorem 5.1 95 Theorem 5.1
96 Theorem 5.1 97 Theorem 7.4 98 Theorem 5.1
99 Theorem 5.1 100 Theorem 5.1

Note that an abelian (12, 3, 12, 4) RDS indeed exists [3,9] as now 2 � n and Theorem 6.1
is no longer applicable in that case. In case p = 7, it has been shown that r �= 1 in [6]. 
It is possible to apply our results to get another proof but the main idea behind is not 
so different though. Next, we summarize the result for (4n, n, 4n, 4) RDS, which now 
follows from Corollary 5.7 and Theorem 7.6.

Corollary 7.7. If an abelian (4n, n, 4n, 4) RDS exists, then one of the following conditions 
is satisfied:

(1) n = 2a, 3 or 7b, where a ≥ 1, b ≥ 2;
(2) n = 2a3b5c, at least two of a, b, c greater than 0.
(3) n = 2a3b5cpd, pd > 2a3b5c > 1 for a prime p > 5.

Analogous to Theorem 7.3, we obtain the following:

Theorem 7.8. Let p be an odd prime.
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Table 3
Nonexistence of abelian (4n, n, 4n, 4) RDS for 2 ≤ n ≤ 100, n �= 3 and n �= 2a.

n nonexistence n nonexistence n nonexistence
5 Theorem 7.6 6 Theorem 5.1 7 [6]
9 Theorem 7.6 10 Theorem 5.1 11 Theorem 7.6
12 ? 13 Theorem 7.6 14 Theorem 5.1
15 Theorem 5.1 17 Theorem 7.6 18 Theorem 5.1
19 Theorem 7.6 20 ? 21 Theorem 5.1
22 Theorem 5.1 23 Theorem 7.6 24 Theorem 5.1
25 Theorem 7.6 26 Theorem 5.1 27 Theorem 7.6
28 Lemma 5.6 29 Theorem 7.6 30 Theorem 5.1
31 Theorem 7.6 33 Theorem 5.1 34 Theorem 5.1
35 Theorem 5.1 36 Theorem 5.3 37 Theorem 7.6
38 Theorem 5.1 39 Theorem 5.3 40 Theorem 5.1
41 Theorem 7.6 42 Theorem 5.1 43 Theorem 7.6
44 Theorem 5.3 45 Theorem 5.1 46 Theorem 5.1
47 Theorem 7.6 48 ? 49 ?
50 Theorem 5.1 51 Theorem 5.1 52 Theorem 5.3
53 Theorem 7.6 54 Theorem 5.1 55 Theorem 5.3
56 Corollary 7.7 57 Theorem 5.1 58 Theorem 5.1
59 Theorem 7.6 60 Theorem 5.1 61 Theorem 7.6
62 Theorem 5.1 63 Corollary 7.7 65 Theorem 5.1
66 Theorem 5.1 67 Theorem 7.6 68 Theorem 5.1
69 Theorem 5.1 70 Theorem 5.1 71 Theorem 7.6
72 Theorem 5.1 73 Theorem 7.6 74 Theorem 5.1
75 Theorem 5.1 76 Theorem 5.3 77 Theorem 5.1
78 Theorem 5.1 79 Theorem 7.6 80 ?
81 Theorem 7.6 82 Theorem 5.1 83 Theorem 7.6
84 Theorem 5.1 85 Theorem 5.1 86 Theorem 5.1
87 Theorem 5.1 88 Theorem 5.1 89 Theorem 7.6
90 Theorem 5.1 91 Theorem 5.1 92 Theorem 7.8
93 Theorem 5.1 94 Theorem 5.1 95 Theorem 5.3
96 Theorem 5.1 97 Theorem 7.6 98 ?
99 Theorem 5.1 100 Theorem 5.3

(a) There does not exist an abelian (8pb, 2pb, 8pb, 4) RDS unless pb ∈ {7r, 23r, 31r, 73s :
r ≥ 2 is even, s ≥ 1}.

(b) There does not exist an abelian (16pb, 4pb, 8pb, 4) RDS unless pb ∈ {3, 5, 7r : r ≥ 2}.

Proof. The proof of (a) is similar to that in Theorem 7.3 (b). For (b), the proof is similar 
as Theorem 7.3 Lastly, note that pb �= 7 from Lemma 5.6. �

8. Conclusion

In this paper, we have proved several nonexistence results of abelian (mn, n, mn, m)
RDS. In particular, we show that there is no abelian (2n, n, 2n, 2) RDS for all 3 ≤ n ≤ 100
except n is a 2-power and 3 other cases which is summarized in Table 1. Similarly, there 
is no abelian (3n, n, 3n, 3) RDS for all 2 ≤ n ≤ 100 except n is a 3-power and 4 other 
cases which is summarized in Table 2, and there is no abelian (4n, n, 4n, 4) RDS for all 
3 ≤ n ≤ 100 except n is a 2-power and 6 other cases which is summarized in Table 3.
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